68 research outputs found

    Entropy? Honest!

    Full text link
    Here we deconstruct, and then in a reasoned way reconstruct, the concept of "entropy of a system," paying particular attention to where the randomness may be coming from. We start with the core concept of entropy as a COUNT associated with a DESCRIPTION; this count (traditionally expressed in logarithmic form for a number of good reasons) is in essence the number of possibilities---specific instances or "scenarios," that MATCH that description. Very natural (and virtually inescapable) generalizations of the idea of description are the probability distribution and of its quantum mechanical counterpart, the density operator. We track the process of dynamically updating entropy as a system evolves. Three factors may cause entropy to change: (1) the system's INTERNAL DYNAMICS; (2) unsolicited EXTERNAL INFLUENCES on it; and (3) the approximations one has to make when one tries to predict the system's future state. The latter task is usually hampered by hard-to-quantify aspects of the original description, limited data storage and processing resource, and possibly algorithmic inadequacy. Factors 2 and 3 introduce randomness into one's predictions and accordingly degrade them. When forecasting, as long as the entropy bookkeping is conducted in an HONEST fashion, this degradation will ALWAYS lead to an entropy increase. To clarify the above point we introduce the notion of HONEST ENTROPY, which coalesces much of what is of course already done, often tacitly, in responsible entropy-bookkeping practice. This notion, we believe, will help to fill an expressivity gap in scientific discourse. With its help we shall prove that ANY dynamical system---not just our physical universe---strictly obeys Clausius's original formulation of the second law of thermodynamics IF AND ONLY IF it is invertible. Thus this law is a TAUTOLOGICAL PROPERTY of invertible systems!Comment: 27 pages, 11 figures. Published in the journal "Entropy" in June 2016. Abstracts from referee's reports quoted right after the abstrac

    Computation and construction universality of reversible cellular automata

    Get PDF
    An arbitrary d-dimensional cellular automaton can be constructively embedded in areversible one having d+1 dimensions. In particular, there exist computation- and construction-universal reversible cellular automata. Thus, we explicitly show a way of implementing nontrivial irreversible processes in a reversible medium. Finally, we derive new results for the bounding problem for configurations, both in general and for reversible cellular automata

    When--and how--can a cellular automaton be rewritten as a lattice gas?

    Get PDF
    Both cellular automata (CA) and lattice-gas automata (LG) provide finite algorithmic presentations for certain classes of infinite dynamical systems studied by symbolic dynamics; it is customary to use the term `cellular automaton' or `lattice gas' for the dynamic system itself as well as for its presentation. The two kinds of presentation share many traits but also display profound differences on issues ranging from decidability to modeling convenience and physical implementability. Following a conjecture by Toffoli and Margolus, it had been proved by Kari (and by Durand--Lose for more than two dimensions) that any invertible CA can be rewritten as an LG (with a possibly much more complex ``unit cell''). But until now it was not known whether this is possible in general for noninvertible CA--which comprise ``almost all'' CA and represent the bulk of examples in theory and applications. Even circumstantial evidence--whether in favor or against--was lacking. Here, for noninvertible CA, (a) we prove that an LG presentation is out of the question for the vanishingly small class of surjective ones. We then turn our attention to all the rest--noninvertible and nonsurjective--which comprise all the typical ones, including Conway's `Game of Life'. For these (b) we prove by explicit construction that all the one-dimensional ones are representable as LG, and (c) we present and motivate the conjecture that this result extends to any number of dimensions. The tradeoff between dissipation rate and structural complexity implied by the above results have compelling implications for the thermodynamics of computation at a microscopic scale.Comment: 16 page
    • …
    corecore